Nature of the binding interaction for 50 structurally diverse chemicals with rat estrogen receptors.
نویسندگان
چکیده
This study was conducted to characterize the estrogen receptor (ER)-binding affinities of 50 chemicals selected from among the high production volume chemicals under the U.S. EPA's (U.S. Environmental Protection Agency's) Toxic Substances Control Act inventory. The chemicals were evaluated using the rat uterine cytosolic (RUC) ER-competitive binding assay, with secondary analysis using Lineweaver-Burk plots and slope replots to confirm true competitive inhibition and to determine an experimental K(i). Data from these ER-competitive binding assays represent the types of competitive binding curves that can be obtained when screening chemicals with broad structural diversity. True competitive inhibition was observed in 17 of 50 chemicals. Binding affinities were much lower than that of estradiol (E(2)) with K(i) concentrations ranging from 0.6 to 373 microM as compared with that of E(2) (0.77 nM). Other chemicals that appeared to displace radiolabeled E(2) binding to ER were, in fact, found not to be competitive inhibitors in the secondary K(i) experiments. These seven chemicals likely altered the stability of the assay by changing the buffer pH, denaturing ER, or disrupting the ER-binding kinetics. Thus, several conditions that may confound interpretation of RUC ER-binding assay data are illustrated. For another group of eight chemicals, neither an IC(50) nor K(i) could be determined due to solubility constraints. These chemicals exhibited slight (20-40%) inhibition at concentrations of 10-100 microM, suggesting that they could be competitors at very high concentrations, yet K(i) experiments were not possible as the limit of chemical solubility in the aqueous assay buffer was well above the IC(50). An additional 18 of the 50 chemicals were classified as nonbinders because in concentrations up to 100 microM they produced essentially no displacement of radiolabeled E(2). These results show that although the ER-competitive binding assay is a valuable tool for screening chemicals, secondary tests such as a double reciprocal Lineweaver-Burk experiment with slope replot should be used to confirm true competitive inhibition. This information will be useful for the ongoing validation of the RUC ER-competitive binding assay under the U.S. EPA's Endocrine Disruptor Screening Program, as well as to support research efforts to develop computational models designed to identify chemicals with the ability to bind to ER.
منابع مشابه
The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands.
We have utilized a validated (standardized) estrogen receptor (ER) competitive-binding assay to determine the ER affinity for a large, structurally diverse group of chemicals. Uteri from ovariectomized Sprague-Dawley rats were the ER source for the competitive-binding assay. Initially, test chemicals were screened at high concentrations to determine whether a chemical competed with [3H]-estradi...
متن کاملRole of the AMPA receptors of paragigantocellularis lateralis nucleus in the inflammatory pain modulation in male rat
Introduction: The 17β-estradiol acts as a neurosteroid in the brain and modulates nociception by binding to the estrogen receptors and also by allosteric interaction with other membrane-bound receptors like glutamate receptors. Paragigantocellularis lateralis nucleus (LPGi) is one of the important brain regions implicated in the pain modulation. So, this study was designed to evaluate the ...
متن کاملAbility of structurally diverse natural products and synthetic chemicals to induce gene expression mediated by estrogen receptors from various species.
The ability of 14 structurally diverse estrogenic compounds to induce reporter gene expression mediated by estrogen receptors (ERs) from different species was examined. MCF-7 cells were transiently transfected with a Gal4-regulated luciferase reporter gene (17m5-G-Luc) and Gal4-ER chimeric receptors containing the D, E and F domains of the human alpha (Gal4-hERalphadef), mouse alpha (Gal4-mERal...
متن کاملAssessing the effect of intra-paragigantocellularis lateralis injection of 17β- estradiol on the acute and persistent pain in the male rat
Introduction: 17β-estradiol modulates nociception by binding to estrogenic receptors and also by allosteric interaction with other membrane-bound receptors like glutamate and GABAA receptors. Beside its autonomic functions, paragigantocellularis lateralis (LPGi) nucleus is also involved in pain modulation. The aim of the current study was to investigate the role of the intracellular estrogen...
متن کاملPrediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts.
A number of environmental chemicals, by mimicking natural hormones, can disrupt endocrine function in experimental animals, wildlife, and humans. These chemicals, called "endocrine-disrupting chemicals" (EDCs), are such a scientific and public concern that screening and testing 58,000 chemicals for EDC activities is now statutorily mandated. Computational chemistry tools are important to biolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 94 1 شماره
صفحات -
تاریخ انتشار 2006